Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
69518 71378 46554 72511 58941 50498 92032 12565 34311 62792 64940 89471 41703 51284 92457 52942 38228 25893 01077 54742 74845 14993 61926 12748 04171 41980 61068 00013 13299 26830 94824 58829 81603 12664 90079 39787 63558 17312 49599 65843 96548 09870 22339 21377 33680 12269 98760 66260 01595 25834 31138 74911 83283 82845 78879 00364 25893 23103 78830 63328 73549 95493 40592 66251 25157 84541 66832 32380 17223 61982 98596 69828 31661 63320 85621 60632 28610 89392 81649 74817 04243 32928 64739 09460 73581 30115 82576 52751 78304 37162 22789 73054 19566 31856 08260 32975 15806 40134 17437 28416 85560 87634 29648 52647 55275 76268 95412 85361 92120 85777 31751 06739 61799 00300 42505 36514 11364 59929 63641 98033 77027 37279 33569 07317 16974 39045 88452 87125 69174 32567 82520 06020 34195 97392 33381 42424 83015 01837 92337 73688 89833 04550 39690 90150 89886 81076 05060 34198 62257 75413 12699 64336 37690 76582 51795 44240 31399 20184 71793 56828 00888 14966 02705 43315 28753 94382 00420 67284 30506 93153 17020 03739 87376 48836 96090 53175 04131 28380 93031 80637 91886 79690 20375 79784 75915 08193 18092 61950 28466 78398 48909 70207 26571 40456 18618 18429 34859 81728 21390 55352 13372 03342 10088 53638 50373 21760 91578 23939 20159 95337 47042 53956 65876 75886 77294 72503 07330 85240 73086 38570 73799 16812 10424 55388 61848 62162 70883 09484 18138 62555 86915 34752 47240 85527 12164 01511 44449 26446 16777 30568 53593 35072 07718 32279 49850 67126 74081 70617 47557 60846 57400 52227 33024 38551 46964 40495 22346 33209 00126 94607 44215 39989 87621 33611 47734 92835 63874 25483 35229 66020 62313 01186 20060 00711 15684 93733 09435 56535 01362 02251 12224 88136 11662 81045 71766 46741 49153 53655 23688 06721 46972 51922 78714 17155 14133 80053 30479 78390 05842 03679 88338 43606 18811 63918 35184 45379 11565 16441 10256 47238 49761 95532 16953 20236 76494 03149 55649 44506 07616 22991 81500 35824 52044 59555 87262 97177 57075 02203 11100 95317 78695 14223 69401 62330 76896 46889 14590 22199 35987 78529 17936 42360 09903 78582 77371 10271 92523 96664 50299 34971 12979 76629 11407 73643 55970 95630 35482 83180 07073 28186 05221 96740 23056 35240 44044 25317 27193 78225 73903 84298 29573 58122 98102 45026 72413 79529 09103 11365 00373 39716 21340 21261 55867 42693 29033 73303 99373 38272 89000 78290 54751 86127 28469 35786 79551 44856 77890 35692 60327 86050 28749 84800 32949 33345 16379 58361 27916 26495 27773 76644 40669 10428 34398 06501 26903 49310 50004 87929 22879 65607 13441 85631 90736 04151 96468 65579 88805 21196 36566 96579 66923 98489 94752 76831 86740 82323 38391 85490 67038 47608 49007 59232 54037 86927 55097 93817 16714 24603 89945 70646 67112 55759 74430 08328 05650 10382 24842 39244 91443 42385 85695 11104 37606 43667 87537 13515 31571 83181 29763 29537 80402 70990 88429 12255 81101 47336 49063 86333 15925 96698 64481 74578 72697 86854 37592 49508 90121 32947 29218 09906 28089 86547 90904 82392 63000 49710 22729 47977 08068 14043 56120 93629 58635 24769 61664 88838 62486 69782 81921 87174 15160 93719 89236 52851 80261 37016 68551 12293 34772 99970 25220 30691 39370 31808 17817 13568 33732 44742 15954 33342 56854 53036 83088 80890 92361 37067 84338 42105 38818 32389 19295 99465 05044 43793 79836 58590 30426 84370 32934 99810 30229 39576 28472 54722 65909 56292 32059 07756 40425 56888 82835 22736 18556 78283 76291 94444 72205 36012 72076 25182 50721 13282 26811 26331 76203 75043 51906 44920 63820 07042 96364 15183 67117 79890 54601 35125 48331 38125 99255 68082 73706 14273 38999 69283 33797 67911 01355 37418 88792 49727 40502 91193 38820 90587 70094 70898 19261 15595 21070 64966 21066 83156 24467 61538 36060 49037 19230 25026 27263 55432 85030 97670 24198 45023 00071 26109 43203 00043 23903 12935 32748 06337 05241 93264 43740 42427 14768 36289 24844 93574 02954 71852 42789 90837 82868 42000 27684 75142 37986 77548 43329 86337 55010 99646 82527 77262 81674 46337 87400 52805 09563 24122 94696 33968 81919 84519 06107 46929 26459 25631 83576 37104 13183 18705 69615 08211 37191 59692 32613 86330 26493 45818 37153 08966 74818 77135 39318 39115 99435 83094 07012 04322 23957 74102 65263 60744 86160 18084 66545 82216 70791 42048 86082 74311 67382 58648 42168 13402 53063 17742 41474 10726 00375 82959 49361 01444 10080 33262 85196 58708 68978 89505 42663 32719 32712 66001 35073 14791 33590 47084 65679 26415 13390 88666 22988 33320 81175 44807 01074 84536 96108 19272 44889 76455 75258 42098 20577 41895 26422 71151 10786 64165 05928 18694 34980 16120 01452 02945 94751 24233 39833 24643 44134 57650 19880 68608 84918 42256 70188 30306 86958 99737 31950 67409 33486 11642 66768 76359 91428 08445 89468 93928 06713 83611 25910 23786 24586 32652 95803 88057 34922 17196 20515 03886 42536 54046 55887 85001 62498 29244 50046 68272 40444 37130 26215 65278 97888 44412 90528 38866 02537 79219 64843 04718 63602 45171 44550 57906 52108 60438 81389 24463 46212 21804 91260 37940 01509 93728 87036 40969 46352 22408 36374 11828 02157 74841 44528 16003 28721 02890 62165 82746 94531 32341 18171 06645 72078 76970 77471 74180 58170 77605 23835 15288 19244 66183 67694 79927 61679 54822 78952 39637 27106 49874 44796 14101 12724 90994 52514 22709 16609 15201 97302 61123 08032 45937 15079 02835 22765 07134 40300 25732 83397 62276 88767 63657 44645 78458 65441 82975 63670 15451 97258 84130 95384 39767 90938 28214 12767 63715 15798 88522 52179 09470 11565 27122 83668 98131 21192 96413 06290 63787 48662 65687 68413 92577 41809 72695 13039 86752 00127 00207 48107 53742 07582 77574 41811 20211 90425 07293 42913 71128 00004 16566 26054 13822 20580 33868 62063 67049 02133 90503 13276 75054 18180 47171 53845 46633 48586 45527 15051 19193 87376 84748 55615 47818 75547 23092 57013 19332 58881 04462 43787 91358 70759 09967 28859 56382 39970 34487 83841 30816 23528 88232 34349 69061 64481 23308 80317 02569 74724 85278 41306 03904 42814 89724 26819 75806 66779 23811 31614 65255 11932 72848 56013 02531 93686 71849 51220 65275

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 9/23/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.