Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
88017 65115 30151 89799 15340 19009 85876 95401 05200 54433 89591 79300 93371 95318 75750 19384 02440 05147 60154 49497 87125 51016 47766 36002 04588 92697 65520 79345 09739 96700 20137 40616 75560 75336 80934 93112 38409 50778 87640 98900 68336 44127 83203 10378 64395 89471 71611 96839 74956 72948 00696 96035 43019 96811 69951 90734 76524 68488 63344 10289 43667 14645 07124 57195 93206 20249 52641 58656 99784 92630 84154 43146 34231 50545 51644 41968 58882 38238 28629 15823 47888 64504 94973 06367 32531 66751 44701 12776 71533 00065 18809 93307 46368 51266 63080 91865 81580 77979 10895 89557 90090 72690 91044 81264 43509 51812 60540 77196 67455 69745 62430 29460 61860 57940 08611 83618 46287 88962 87638 55252 30237 65552 97541 31526 08469 34689 03632 97750 81306 26652 21323 88939 99951 19083 23936 66379 36796 26052 75514 19187 80740 12115 88638 90875 57497 31381 07234 30912 74910 91569 14389 71287 93263 43076 65164 28070 20595 93039 44402 27976 33010 44392 49548 59928 19993 59934 98453 51617 54717 51391 62193 71066 89362 93475 22878 53194 75424 62951 56467 51376 09027 02696 40579 14007 01235 10762 87304 86064 73370 54440 01018 35669 77317 09324 61196 05648 40840 23368 30221 90101 37897 05954 86200 35957 83946 41950 80776 69541 56266 30777 21936 48134 39261 50468 81832 36537 94779 46733 29585 08634 57419 47019 89103 73952 54851 99574 21892 29225 53118 37510 34865 34957 26960 67865 13162 16986 55117 85663 77955 93041 40648 12982 69265 24311 56239 63011 53774 92002 14518 29115 57633 98904 63368 98899 24284 95950 06237 93266 97260 33783 47452 30485 28010 39311 62532 15250 08703 17278 93500 52741 30042 76820 69195 87692 64080 83031 50585 68449 72029 33526 01080 36034 37073 59998 81842 38206 22183 54790 72101 68526 52927 22447 14467 30418 25282 56286 85238 26233 38448 39957 89720 71308 52661 74002 82532 33032 72005 27421 12924 94908 52222 14234 95087 45613 33530 95044 03464 93064 98428 03595 93068 03478 54516 98343 44787 65434 42304 39009 35703 78940 68022 88149 34402 69489 61437 37712 21285 27127 58665 60604 33882 70513 09979 87252 37165 35979 12627 07164 18861 91600 68642 95492 09762 76247 67654 64595 29038 63658 94702 40604 54552 51496 63050 64979 18171 75410 71996 21075 26077 48102 89685 85707 04082 23388 60925 05705 67940 85256 39992 99484 18658 61937 48451 83604 62808 64959 57964 24329 57844 53216 98101 14196 82409 22025 89157 73571 31651 17195 99962 77217 37534 74082 30691 05853 14151 81658 20684 22717 28036 71569 81248 75130 93479 32201 53480 21057 92832 47738 91072 80669 21831 62231 68126 12910 59900 68653 11968 17051 65469 22969 60960 59262 96281 83192 47308 24168 54713 73449 04881 91414 58079 73043 02021 37226 33949 30516 99353 60975 40459 02710 32602 36741 11624 18829 20402 89870 27650 69505 97109 98544 10248 20857 70615 20336 42944 53556 05159 43778 16393 26885 29142 64920 98693 67804 67935 88897 30694 85009 01697 56485 46313 07998 48181 95669 17848 51135 70554 98203 26284 02705 10203 21174 56614 38985 44552 13563 18146 63301 69871 67806 89816 70092 09091 96361 90503 33975 44616 33268 74338 23803 76134 60710 51020 41730 03433 60579 31127 87274 34207 91034 96427 46379 16877 88068 95193 05477 98397 92068 62513 90550 07068 99378 65607 31195 60354 38862 74134 49683 97689 73464 55506 75024 38292 26776 95204 82028 63982 34595 42087 55371 26986 21486 78703 78652 82755 02349 16608 48458 47774 08976 16671 13429 82376 41619 34392 38318 98556 45547 90212 93051 92778 12611 64824 66796 03794 07808 19491 07019 95454 20842 41352 83551 64516 42685 13738 77648 73461 67142 11485 96054 08308 17413 21243 10064 61419 97654 86795 19586 39320 69541 79361 42206 95509 53833 92917 27246 88267 56931 64506 94828 63474 22446 19548 99939 62422 07756 42157 21493 54622 85573 70449 76388 95624 70503 16856 58578 09822 70608 13441 03125 98274 63970 82206 75272 71506 00255 30409 84497 07333 27270 70872 23579 33667 42531 67300 32660 36329 69825 04585 88311 91862 60767 84125 17587 25348 21372 44133 37096 93211 63606 04955 17060 91040 81959 39372 70374 86395 55002 67925 66675 76620 71949 79217 71397 71658 84223 75232 09840 01862 82015 41646 56228 50807 95849 43137 47775 13103 23143 43701 23745 77210 79773 51962 89515 33246 76633 91485 05638 05800 21199 96090 01904 11751 44094 30164 16407 43071 50646 33971 59602 74645 97453 93967 03369 97080 93943 38112 95078 74516 28943 56184 96649 27445 22234 45087 48616 40514 01116 79169 59187 95348 01972 05530 18311 28352 96831 64338 36735 13533 44926 34139 10072 70305 69262 02171 07858 96307 58176 59674 87619 25212 91897 22206 33932 09539 94113 74956 22487 28472 08533 43049 09148 20661 00445 86870 44019 42048 83282 22366 10506 48667 70187 66364 89375 04466 50569 06883 47821 14114 91670 98447 53525 80814 65128 82394 13721 89120 98537 32192 39253 12742 52010 23751 33644 47367 19743 30734 07154 68463 56575 44870 15843 14099 29555 21269 25636 92753 94498 48730 01383 16124 97553 45058 20921 56949 01763 77372 14139 31810 38630 07422 27040 08951 84672 61899 10802 41089 62991 27747 35841 23223 69834 72477 30873 75454 26154 89480 46980 50791 54173 68336 46668 67964 78948 90130 17930 69241 54927 47765 13312 03236 17516 91270 13973 32724 59643 98118 18746 67452 33314 68535 58204 21953 76183 45812 33721 98357 63109 61621 81533 94204 82721 06325 61802 35257 38981 24289 72679 33315 77743 34198 89365 69022 38322 74361 28176 99685 30049 73034 35601 92082 33838 43722 02369 80278 28748 05499 02511 48433 43546 28318 57418 38619 33266 03323 24909 83630 80776 38160 13292 64796 23338 77295 20423 94794 04171 47321 97774 25460 49014 27270 39492 80604 67687 43933 96461 13822 80654 92164 15368 91307 70589 80196 02761 99660 58933 99955 14115 78707 07459 22369 67894 79310 44837 17683 84611 46175 18190 00773 50893 25673 69664 01454 08544 98643 37986 59794 68605 38211 85026 46431 50418 92603 47364 07880 45687 92951 12847 36845 07545 86113 22155 67539 64610 92481 95363 95986 60054 88793 83502 25344 15658 15949 45123 36208 20883 11823 47860 81930 46926 69070 94989 08926 85785 17947 76995 01994 14321 34119 48133

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 11/17/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.