Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
29919 18815 43332 89915 08511 21441 45244 79809 76939 26827 22077 95331 17312 69893 25326 13244 05589 04013 51116 76426 19388 77582 10513 82930 70800 35576 24835 00046 64202 46118 45969 03367 79067 52035 01680 40849 77780 47425 65924 21872 38446 79219 54161 31305 12709 73740 43668 68570 08557 88271 18851 11698 98141 87612 41556 06401 50581 45646 46384 80124 89787 71901 61003 81117 77263 63111 51458 42491 19924 79782 92487 71283 02908 47748 62832 62519 47389 84740 65551 38275 93386 51947 73329 11741 07582 30576 98796 76283 16130 23415 89833 19504 62467 81400 49889 62309 90131 55169 83292 22966 50569 71635 65560 06168 35949 35539 38715 17097 36976 56019 31598 00485 25701 98168 05175 04680 63337 59600 22857 70702 33069 72010 45806 46311 97867 27739 53253 25069 83298 31334 87806 10399 85340 76111 25766 04651 03194 45719 72435 23164 97095 40701 82435 33325 71126 30057 05014 18639 81031 27808 54364 67781 67026 94555 04929 88670 11612 64045 11720 47521 22387 94730 55627 32915 39862 46333 13730 44858 70268 81411 54617 08845 43371 91911 58687 14920 95286 50741 63472 81743 76288 88326 33943 45647 83624 94175 57826 74705 19326 43441 65914 07790 73025 48482 77377 18639 29760 35428 70079 04914 02796 45740 75885 02266 91429 62775 00979 23395 63807 63343 71172 22118 64733 94279 02218 82424 48488 73996 95123 32542 36635 19053 56461 84002 00835 95716 43684 95696 70659 96520 35436 62943 66403 41833 26866 31550 56895 06416 49936 36875 42312 70990 18741 67889 61992 98791 99814 56237 27244 37142 07443 90306 79164 44006 23985 54281 71443 39556 45171 92211 78185 82734 50428 97071 26714 72813 98183 24825 55393 75962 46184 33485 96429 76805 96803 47179 83690 54988 67356 45211 85517 86737 85414 76122 62537 71424 09111 96752 50474 83128 72464 36309 67961 47195 55678 85423 49355 41806 80463 10213 02548 24535 30346 91349 91780 83914 95983 88116 45451 15994 45470 27472 88931 25908 19659 18114 02380 54434 52466 89541 03552 29556 16187 56115 55613 43028 91811 06123 99949 51936 64329 15841 13986 05262 43048 88594 93992 95442 06906 18823 62900 34935 74780 81143 03112 57780 00803 44408 14318 46159 94672 10773 96304 81965 66967 79754 56766 23358 99454 37297 44123 06329 40407 69832 05330 71267 24916 03343 68690 14515 20197 67425 51663 64936 95911 84351 93685 85476 19471 83129 13976 99726 76357 38571 94353 43481 15426 35352 87045 41310 19230 57070 47501 08110 99322 00314 92207 75675 16573 13722 81497 44256 26482 62048 27364 59121 49489 15219 26274 12123 66289 62402 16978 68258 38144 51062 63325 17229 52192 51032 62075 50009 91765 43566 75708 60404 31700 35409 90241 71612 58646 97857 98040 87791 16385 30817 05629 70616 76138 51874 66505 40844 31882 10351 38950 04880 20658 26371 68845 06333 67888 54920 97480 02580 57684 74911 94369 66335 28164 03244 15058 12202 91758 33871 83944 48245 80530 01856 02082 52545 16483 72440 80002 74766 06873 55102 95517 62719 64525 42622 76538 13918 53140 75141 08887 52149 57612 29229 69109 29029 79339 31943 82281 50571 56536 99889 04832 28743 09544 03290 32349 58033 11150 55042 32391 17014 81890 24780 02303 94898 10369 77940 52029 43110 98572 39820 11920 51839 32174 84646 65553 51611 75852 49631 07537 39842 93603 74038 26331 32410 94052 63245 12054 40207 00762 77806 89297 70711 47555 47510 74935 54544 98816 10450 60943 97033 94810 77082 22204 54777 21994 19287 49326 37205 08327 84433 06450 33143 43586 34442 14066 62370 24677 09846 56823 52190 25946 18855 16344 38984 94495 51416 29036 94780 70491 18278 68904 78813 32479 15052 55364 14086 67698 11276 86053 88937 67389 64475 94645 83596 47109 59225 33661 21750 92045 71217 82280 47107 27327 56316 79158 24956 13335 64625 80231 68732 66018 79549 41538 91574 02204 81856 27025 82893 09911 38739 41360 09932 43662 17881 87748 44328 44796 26514 50741 13674 86782 75484 04051 78084 45528 68312 43363 31754 94699 15259 44147 29524 26023 72386 44471 38441 94609 05617 52811 14322 89257 79801 80870 03314 27772 72776 01382 68463 77274 14432 30931 41267 99512 50771 37760 98246 21176 32970 74585 62503 29212 31446 36407 30283 91130 74916 43326 22540 00320 14461 48349 61498 46363 12586 70210 72210 10345 57286 51174 09126 85167 01105 39857 07653 20860 25203 99033 60717 94896 28414 38448 20326 07500 41310 72637 24132 01964 65264 03728 46996 09961 36513 29263 77545 21852 15220 75004 19742 82004 99534 52748 19443 09100 64658 43143 15959 41451 26906 03494 18623 07311 32769 00579 08350 20187 72975 68462 64198 99152 21554 91304 14933 14158 99898 11178 15590 56350 65827 60876 49038 33375 27647 21730 52538 89698 83216 06415 69308 51910 84005 66768 25088 99048 24160 26600 29698 57898 54567 39506 03604 23316 21911 71678 29476 03536 32742 09718 28757 90482 42533 93453 63221 55083 69749 73743 61536 67586 34904 95296 70827 42863 24624 04481 33238 10731 80712 82139 87497 11259 14211 01395 95475 15084 44461 10474 93751 68719 63168 40510 70171 64873 23463 38359 65417 37753 53966 24414 99563 83389 97847 75414 23639 04934 76889 32258 96198 82985 80551 32819 84871 70895 80031 69754 92938 15079 67328 73318 10882 00334 19302 19178 92958 20147 86741 61220 58751 72010 08422 89367 19742 77732 50169 12391 30870 28747 68924 65723 67092 56436 01800 44265 24946 27429 80153 60207 49116 63926 68637 25836 83995 89003 29269 61346 50241 96930 10493 27659 46347 48479 61242 84227 75201 91240 69997 71854 95646 04929 28854 20501 99045 71708 22586 82103 10845 71488 42702 88381 17136 02251 26514 33651 16214 25354 21194 82641 95146 35847 72844 03302 31331 57785 40551 24620 19062 64538 35454 19427 21090 24105 84805 12218 45183 69426 21033 11958 45695 93697 95803 69899 50121 70678 19083 62388 10664 00010 23203 98686 80798 77523 51918 53775 16828 90553 74475 26170 04452 38251 24666 20736 10328 76898 64902 56499 58631 90216 75266 99455 32620 84680 67581 20386 01197 09833 24470 77674 70471 03597 63419 25108 60323 62582 25841 44701 05962 37407 91137 04502 84495 53004 15758 41405 66485 53934 97269 68968 92514 74701 63410 10218 74745 35062 86160 55469 23489 60341 20798 45133 98760 26739 69968 77531 86844 31651 72738

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 4/5/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.