Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
71894 57312 03323 77248 63352 50151 48171 97610 62545 96737 00916 86859 77340 29719 94865 51326 70000 18561 52876 28686 08743 14856 51418 95778 44308 22638 09640 01411 11516 93695 03426 24180 55831 47883 04461 55278 84926 18435 44295 06306 45243 22275 03404 42092 23554 55334 25249 38496 73529 12855 55345 65224 67293 34715 05319 93648 71989 75727 41973 29606 51346 00963 01351 71225 92234 06057 27792 91730 56232 62524 38003 47254 56188 88072 10115 09655 57782 41910 97746 24323 06087 45065 69069 92998 77136 25692 70864 81580 54480 89388 17593 52942 30752 14504 05452 24740 34228 72458 51440 52231 80395 73045 57418 36078 48506 34753 99174 55171 83147 80073 40483 24432 20798 55814 72172 77632 41399 78412 76181 75202 44905 04245 14624 37045 52857 24945 43856 00350 34938 87711 53531 02404 60539 40621 30667 88403 75320 02942 48708 44266 02774 60448 81585 54448 70788 85728 42781 84751 63205 83500 49393 90136 96390 60923 11191 47539 20788 22911 44686 13680 47489 92443 12189 07875 99789 55877 85873 19854 89757 33265 36839 42566 19789 73660 49175 29997 09181 75432 59020 79980 45681 31581 18625 42009 62060 00047 85419 50050 37669 99025 36068 80354 25005 27276 05539 34269 01271 09440 51163 46056 44940 66347 41695 15695 37317 10334 71380 66703 89102 65552 99013 28945 91950 13281 12003 46446 95039 62243 15433 10203 06625 43915 46127 15998 20612 32837 11707 47211 68109 91933 54660 82634 93996 42813 41399 29278 58483 61095 76324 80191 63676 96711 40887 97271 05139 19224 57651 19071 48452 88135 79359 93622 30782 48203 02987 36237 87435 49751 08817 12326 03429 93981 24491 45212 90049 03288 14077 48939 86411 16568 92132 86087 86029 09536 62765 50581 88371 40035 83695 75510 75425 18349 55320 65933 13263 02516 34775 56695 78599 18643 74995 95239 10355 06211 88779 49417 86223 88396 37853 40305 24227 67377 46930 00014 09285 44650 42773 54502 44772 66339 18259 31387 29083 93508 21443 92760 57195 97479 69614 92998 47229 80136 88365 61574 92013 19246 75651 10873 35645 38763 90853 69001 75056 04149 68842 37599 86570 42680 59036 74658 77467 88761 89469 02328 62550 54239 55851 39729 65702 23716 35630 60771 46449 74858 27052 76958 51527 23712 13230 45205 91439 95014 51202 00650 42023 17508 85993 14466 71007 44249 89679 76675 89582 97926 25450 03957 28952 41166 36671 72465 41909 71852 60947 75639 29385 43432 69182 07014 92022 10233 29643 68037 06730 97774 97025 00878 28252 98078 26508 46241 15723 89984 12827 26177 84240 84460 54326 51899 81414 94915 42027 56592 88941 32513 73691 53226 49162 26483 92879 17368 16624 69435 53014 94996 34643 87668 06445 35311 36869 36485 18513 48547 73843 20508 06604 88789 64567 38986 04222 61780 73060 56110 50045 57736 09924 96323 01988 09158 58905 64637 76268 73645 28458 91943 11467 41706 28304 05320 57590 69572 70998 23355 90132 37011 98491 76448 49137 30137 33688 52131 03264 49225 57015 65376 38848 41522 07982 53908 73960 59060 11739 98519 97475 41469 30647 68381 33129 23791 40836 91356 28583 69288 33765 49311 69490 27257 42792 98428 18549 15845 94728 14519 79577 29858 86405 63338 86562 73574 86240 95892 17735 18556 60789 68753 34624 86467 26319 89375 46123 56878 25365 86401 97550 00082 28295 04979 84712 34910 59871 27073 92967 11539 50811 16776 61285 19304 14355 90622 71313 19517 47823 12900 61436 03272 59179 15965 65841 74263 18596 45550 78576 56590 35016 31080 42616 27581 57713 80984 63924 75596 02854 03007 50514 82842 05064 49525 76513 33189 93989 87852 71224 44977 95856 95558 33190 28833 60035 80779 69250 70481 10606 27530 58611 38554 22915 66017 41905 17409 25143 67951 35250 64938 24865 66857 69316 95381 60611 03392 53387 87138 78433 95653 64422 15579 33465 34490 61119 10864 16482 03821 22976 40747 05471 25941 14355 18393 42185 31838 73543 35191 33711 56504 26815 18563 79029 59247 27498 14781 20577 69003 20031 96774 20812 54651 29031 96948 63773 20322 73351 64989 81645 25715 05145 50686 06318 31407 73932 11734 45953 69168 15654 46552 86542 37270 66744 52095 18472 20802 03185 06666 88086 36982 04571 77725 74250 05469 43176 54708 89907 43678 98009 06835 08649 87087 93881 65923 16272 34555 65466 34200 87343 18632 46364 17117 86760 00873 83163 81160 96318 92147 74501 36661 66265 97954 35132 45614 91872 88735 84983 54484 14991 95183 63220 52024 50618 28561 67310 52083 38457 26008 17084 01418 19479 20855 43798 12512 37491 37937 04196 21381 65692 13907 19573 70391 58238 42544 39838 16066 26804 45071 32575 61903 42151 65463 97106 16184 60679 90763 03556 74790 75998 96391 56910 29011 95488 16461 86080 98360 41860 39089 57968 88385 79719 26707 16524 73482 67129 61378 46814 04707 32171 15104 64078 42588 74510 45142 27795 14938 91955 14317 80744 99671 32021 36331 13068 32606 68494 46076 51336 40288 02992 94952 72604 97796 91525 71172 43481 11558 96064 45079 84186 27161 61097 39458 57618 62164 15195 24846 83411 63912 97572 39849 77000 92349 09650 36451 13685 27826 91622 50325 17690 03919 24011 96152 76230 65240 54235 87927 78567 50245 48169 84274 80079 99054 66708 58758 91319 86257 67330 95199 92078 78731 30655 07984 70448 18450 12011 87376 86884 30297 17997 69833 63269 54880 08043 33315 96970 06340 20972 17597 99908 55167 26567 69587 62617 36010 02129 13629 43306 80492 34040 46827 81922 75020 44328 59346 39213 43599 42228 79733 60792 55645 00744 45225 66195 58795 58212 97064 62949 36723 44863 00807 85629 91949 34384 91643 59926 53655 20484 44697 91704 10493 18450 70354 81067 68403 91718 34560 61421 33421 03427 04145 63533 19493 92988 17125 04596 81289 77644 78025 02292 72013 79032 78183 13855 26217 74746 41067 00130 67613 74898 92586 14638 41886 23686 56405 17640 74506 25948 74253 15196 53540 98732 51237 23231 37467 47854 26159 56595 87987 69464 66823 43125 27835 76605 90348 62711 23595 50776 08484 11354 93509 18497 97922 90233 40295 52871 95606 19764 08953 00144 19047 78664 69583 31268 11636 68013 25192 18468 12952 00318 44514 36797 54083 13572 19814 90706 77928 10321 49708 65600 84520 21724 46970 04406 01329 96615 71346 09132 78581 15565 87371 67431 09569 29949 47173 04161 75964 26003 98294

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 6/19/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.