Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
48752 51426 28163 37424 09978 35059 00337 76690 49820 67607 71466 81977 02929 26372 65900 11494 00926 97736 80738 05188 30220 03728 06148 23808 14815 53581 70675 12965 24126 20300 11558 92196 05792 42221 70037 69028 43486 49575 11672 78036 39727 16049 71647 44911 23699 35352 25093 75517 84053 22771 82390 69959 26728 41742 09487 61641 57761 55404 73212 81331 91099 03169 11583 46222 81411 02278 29123 73997 81900 74369 17172 21887 27120 97036 99197 50740 40782 80391 01107 14076 68570 68632 46566 72156 35956 66597 77304 31041 31006 91334 98430 06654 12199 48660 48742 13846 41234 34723 96046 80454 40848 62567 57462 86368 77623 13691 44739 27589 69803 14616 34567 05297 20105 38443 63892 39906 73529 31418 50224 10134 00174 64496 36953 17061 03049 09898 63660 73194 50886 42681 61431 16526 35952 67292 73168 49604 56861 69140 98899 03585 26388 91149 66099 27303 04281 35328 24992 01332 55071 89330 68871 77044 30889 78014 79407 40676 79275 40009 96962 02390 75992 29276 15903 10337 82839 41672 04913 89719 30460 66508 52303 06850 26162 63118 36327 58221 86724 62415 20492 84559 96208 93458 73871 09896 88777 35013 16416 05623 56502 92116 89273 79560 82178 97634 50087 90013 97133 38829 93323 84840 64044 08920 95575 65511 84749 83645 85876 76174 33058 22826 41016 17714 12565 96926 05848 86816 39463 38619 38607 40029 50356 19346 81217 82829 35067 50880 54607 83678 94459 11890 79024 13090 23238 99501 19340 07693 17775 05858 55372 59289 08909 19687 77189 28920 19767 52861 05428 85928 48572 91956 36603 72018 76460 74822 13420 90321 00286 92138 20090 19457 90442 13979 02639 52595 73668 41376 14223 61520 40864 82880 85439 85690 79901 56124 19637 46303 33438 14386 13235 85357 81729 98150 01029 29715 50440 11671 26507 80162 43458 24534 37159 25475 00708 98221 04795 81480 80958 37670 70849 55117 69641 67836 16702 33502 11660 35261 58984 97988 69204 34627 69895 63229 04559 60325 22512 41244 87921 83017 61103 30476 30210 51193 96441 29857 40880 17742 26115 77870 10734 91507 79844 16611 19732 13852 89786 80850 69811 60223 85856 12099 42690 66709 16033 97669 82686 81607 91675 34732 04528 41984 57832 19390 26166 75240 88559 60729 26585 25666 07226 19890 28619 06014 31832 74124 06762 74053 45317 05860 19978 34135 90877 16763 69520 63756 92273 66800 81736 65120 99143 38303 15886 41699 57320 25026 96951 99799 04139 46215 73448 75119 88751 85665 00241 84315 17437 55783 46355 01563 23919 86655 27787 60122 64673 40103 65320 78895 39240 48749 67335 13989 35542 80082 37620 35286 00192 25512 08190 27996 33806 14441 97092 19224 11317 53319 91222 29534 27286 89713 54136 49508 66218 01362 58863 41310 97868 10244 45715 65249 97560 21641 05106 31340 91497 88193 85355 75870 27073 98971 25508 62956 68185 93530 13144 11108 15548 00979 67189 44798 52003 04038 45731 71013 12837 28104 78830 80823 81087 55313 26330 75944 07858 63600 60675 20298 57633 90763 74716 16576 78588 23528 14530 07803 97901 11609 37228 03896 42068 06768 93766 33230 82214 26884 36764 19202 04403 45008 53313 81786 04956 03433 22789 64105 10758 52751 99666 83987 24574 15916 21328 10529 95361 77310 40882 65663 13579 96802 84969 50712 31504 48813 36579 97957 08542 86375 42861 47200 81540 30198 47939 47324 60099 82730 50718 82857 46885 67219 87706 25532 82946 91777 40816 10855 18018 38440 70187 39661 05844 77234 71992 04681 24480 05237 61251 42102 21614 10637 79646 08133 84874 61800 28330 80563 37141 21329 25742 85324 56866 85130 90418 48059 23374 46470 48805 70677 87184 85043 68072 32921 65320 81031 13923 18928 61621 54166 33410 68792 12054 27794 62745 55126 55028 17937 60114 84626 26708 47355 63486 24632 81323 84609 73429 54692 36482 08122 60920 43121 43484 95246 00160 48569 82634 36317 26385 46578 83552 73725 18678 81150 70487 65971 07782 41303 32630 76735 08914 62640 19425 88932 79574 53907 60884 43779 02362 48557 12896 04857 92786 81313 27543 47171 32078 89730 48409 71217 25005 40757 30898 42038 82682 82302 87538 53295 30383 19790 58302 16320 40356 17729 05916 74186 89632 26272 36172 40767 42843 32778 43240 64800 60028 38376 79985 18946 29450 59528 53272 13856 25408 54590 44284 37232 91047 75373 53832 17888 46172 43711 72671 14815 20064 53018 76806 31242 09285 94852 47812 53698 60497 10480 18141 16076 78271 67437 41436 88694 57901 61089 87846 92360 43217 41200 64335 37431 09396 63488 59995 87878 70775 66192 16360 50347 13664 71633 22721 88225 54157 12774 36430 60696 20948 84789 28222 86810 63139 21619 52521 34541 83056 97538 42757 34853 94059 53714 31676 20759 03356 49773 96650 91387 19816 40358 29997 01040 86780 76697 34285 73259 39875 33162 42650 39886 89823 58830 64108 05126 30259 54049 53865 34611 70540 72000 08631 69460 93558 45256 86932 65342 38552 37351 54424 56542 08921 19333 54204 45019 05039 71337 02123 14470 82062 09140 07098 69394 32745 35726 16425 99151 95255 17851 86092 67030 85978 87599 76091 24306 57339 68952 70728 49306 80607 29348 23941 11468 53714 56243 29608 60409 34063 58677 16861 39983 96343 93834 70399 27344 15341 18605 75798 97009 73752 66150 89829 09923 94996 47461 35763 27517 01027 77926 23689 50774 95148 28888 95826 84289 69821 04212 96833 25336 39480 41842 69123 77923 98345 40369 73177 91861 03234 10589 32852 26825 81374 52070 05699 41414 63217 54711 78271 07217 40248 25303 86440 47872 47800 39098 60704 03131 72866 16366 96504 17923 86912 23957 49535 56414 03691 01870 56057 41071 62050 14806 78211 16724 33748 28738 74328 39629 56268 12473 94242 91531 90626 64209 99606 18724 04186 63102 09201 96118 78474 45829 69247 16297 41987 08148 48721 03582 28007 31461 59665 53098 57413 34378 02501 94831 46498 49278 36340 82693 39773 23873 74300 08584 67786 47768 03813 41457 29934 04025 31940 91376 02271 45727 55686 98582 70328 97539 57307 47552 86917 82269 24626 06068 54950 72432 96347 89271 35248 66816 32362 48730 79356 92036 09070 86502 87353 29105 39684 94195 90666 64991 19548 17029 59882 69185 96446 42902 37561 95255 65917 16449 96047 07417 91564 78105 20285 32093 50373 28168 15625 34475 03017 15866 40644 20086 89176 53409 64953 61345 47845 55062

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/10/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.