Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
04263 56818 46217 30577 38576 75095 52739 51955 76615 79458 09206 98887 11820 70840 69067 42277 37727 49884 86649 50395 55781 93498 87471 77933 08153 56426 63556 80073 35547 97804 93744 51547 60015 32726 89001 90703 92768 08806 62737 88561 66993 07740 26116 42881 95658 71868 08368 97225 54331 55736 02101 05016 88990 02661 33615 18604 48836 46292 58214 03327 44104 37173 80518 76575 28877 94303 99777 71849 08899 81702 80182 27828 74386 09973 46177 02427 57840 62860 02772 11864 16858 48819 80859 94719 41950 77571 07517 00998 89347 61672 01333 06196 38818 43071 92708 50357 76475 44674 69172 02141 02594 46908 45698 47881 64422 89280 60011 05650 13991 96944 92904 64321 90932 32259 13547 47631 30285 71353 49803 03242 95313 05689 83539 16804 35314 68622 70938 51020 68433 86964 87810 09704 89477 57548 99910 26845 02724 48788 58245 80674 79738 27244 19388 32720 42180 09180 90791 91875 69622 37133 01098 03458 32358 81469 95457 63276 49217 66951 55832 56687 70376 24298 46317 22661 85173 66748 83444 42846 54918 91622 31504 55626 70704 06884 22849 95187 36225 82708 03216 55578 75584 28034 02027 79774 66107 92137 27712 73738 96152 91184 88017 45484 47930 59801 35316 69140 05308 27632 36924 74008 86628 20905 70411 58629 02515 88990 43914 29846 38694 55967 41446 66863 63798 97182 93214 10313 62184 40817 70929 76314 91745 94445 08117 95536 66719 96597 45433 77264 65507 93326 00975 98456 63480 39763 65594 17809 90796 26687 23205 14822 15210 32083 96107 53857 49887 97703 15286 73201 86217 30635 15733 99129 51620 29859 56757 84968 92369 37813 67294 75158 81394 16954 16223 94314 51098 51322 07675 61290 51171 73100 01350 28241 31399 14180 57823 44684 49478 82721 08866 46562 03828 64716 52749 70309 91402 50552 74562 91905 90504 86573 91523 90948 68594 51642 23292 39710 15108 58706 87281 17199 99266 81354 18971 48227 52886 05383 17221 67468 78194 05360 14579 08522 80643 46184 72601 17977 26717 09648 02157 94472 26749 46001 08745 52759 42733 50515 62807 12766 21135 65040 95037 13659 50706 04573 16696 52906 45295 08818 64924 50336 51662 18747 73052 37206 82287 78165 65916 70260 73188 60272 80167 70794 66729 19224 09585 88715 19435 66697 75393 91608 34803 73449 21567 78796 21116 95884 35148 20402 74253 27609 91557 21411 85505 76006 24908 10738 74386 63784 23317 55282 46442 55550 49217 98995 76070 09365 84669 26941 14326 53314 01676 54362 21738 87059 57496 40735 26120 08410 14952 28840 05383 64882 87747 08820 95350 30262 10774 07244 22563 06165 35431 01169 62103 48605 49932 57201 20396 19551 24620 95563 43030 63490 82280 79151 47564 08994 93450 27600 81344 95277 96734 56346 04312 23762 44117 40687 96820 34640 71273 04849 92445 08435 92881 36044 35796 92565 22937 23538 65333 52905 20065 22706 21173 50351 57830 44102 77907 42379 20053 67517 02413 09610 21119 81044 36663 07372 51292 45136 05541 42265 47030 81677 49655 73716 86293 88034 83147 40552 08857 76129 76505 12554 61628 36494 64379 67021 68952 27339 78392 90339 27930 88611 04951 04533 28731 81059 68062 18839 99899 50294 37139 06262 78672 15854 59820 05136 06292 85263 19779 45693 48317 93100 19537 01621 39934 65052 88274 66626 56270 06987 14643 55999 07707 19007 04584 33173 60195 34517 64134 61288 80561 84285 07237 79756 06822 85504 88564 05818 43503 55857 61319 61112 81942 52576 60055 23232 45608 36507 08482 02291 60409 61171 52286 42484 50009 86829 16937 48653 56137 19542 90503 37843 83903 75233 31461 15872 72107 68753 01512 78888 88551 27940 23392 39935 50358 32682 63683 80512 69275 78981 40629 27140 21994 68016 56946 52920 45459 20204 57635 04099 57182 14260 12796 51630 00552 51265 25437 67735 15150 43726 64289 27471 32061 29637 21621 35286 94188 11542 96046 76586 01561 20601 00339 94299 81651 05648 94247 90431 84685 47254 42302 52636 03954 96795 96636 05773 21130 40505 04788 88471 76576 88547 42521 54691 64658 89073 71633 00290 54058 67283 22770 14579 33089 89492 03237 56892 80004 52190 29814 58142 58309 96107 86565 47388 37079 45272 07649 03397 36265 71078 85140 31203 97012 81342 01831 63674 76967 34373 89052 88072 70594 78028 09479 97616 54486 13778 64949 68045 57678 85769 29274 59178 56958 94887 06046 41482 97181 37817 11460 47628 36580 71108 82118 49058 17081 00236 07845 57545 59612 93663 89503 51758 84419 21903 21798 28822 56376 21584 01100 80882 55299 84509 58250 96665 71257 71718 16373 88041 24886 52554 73694 41590 12701 68722 11347 95159 77409 23353 26189 39428 03220 95067 88611 44472 36160 77034 25353 11322 29384 41036 27314 48529 13491 26535 82367 73726 91830 54726 33169 40191 60818 67608 59976 88409 55253 92044 88453 22633 18621 28819 22487 12450 98414 66710 02001 19340 66440 21544 85768 48241 64136 00259 59216 24111 72879 89972 67251 93488 09302 72036 72060 51057 45603 61105 35931 91209 54860 69198 29059 84604 81342 94759 62363 79733 35821 36718 45299 29485 15886 33559 68668 42704 51255 27377 12432 60752 74088 52945 78527 59075 14299 51772 48671 73764 19866 11170 67183 53116 02148 28311 48791 34196 06196 99297 11444 44405 06064 33215 34129 28034 25121 91204 39679 97835 81368 50516 02587 11578 57744 93579 81819 73613 97445 22061 78627 61437 24231 95926 19359 77254 87742 97507 63274 24536 33810 20559 35354 09589 99769 84326 84116 68112 34772 72603 64425 16761 45099 97800 45305 29713 64471 90000 42753 40225 49365 11026 77552 67200 99323 93500 58082 66748 02266 04911 88133 08748 04807 36669 99718 78411 07561 18176 10886 02843 85462 55883 08532 02606 33072 97355 56211 68283 34894 20331 26953 62038 60685 46792 61072 44180 85768 82017 48978 24724 36346 78647 38993 39957 59812 25753 70161 53996 20065 62890 30063 85352 17818 19167 37623 58494 35915 77305 50931 80412 09639 62699 00045 42175 22029 57486 44811 45500 24191 39601 57672 54307 80607 46842 31479 71288 39452 65936 12309 39468 27906 46594 57271 68764 72464 40582 17326 87552 44250 65775 45089 19226 29330 95228 27654 83763 24023 71231 44396 24285 55216 44377 49788 58620 25673 37620 81216 55866 84350 35342 91785 37953 21709 97412 08138 06205 90025 98251 13263 92903 48703 90892 54311 37850 34592 96043

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/21/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.